
Subgraphs and network motifs in geometric networks

Shalev Itzkovitz and Uri Alon
Departments of Molecular Cell Biology and Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel 76100

sReceived 7 September 2004; published 22 February 2005d

Many real-world networks describe systems in which interactions decay with the distance between nodes.
Examples include systems constrained in real space such as transportation and communication networks, as
well as systems constrained in abstract spaces such as multivariate biological or economic data sets and models
of social networks. These networks often display network motifs: subgraphs that recur in the network much
more often than in randomized networks. To understand the origin of the network motifs in these networks, it
is important to study the subgraphs and network motifs that arise solely from geometric constraints. To address
this, we analyze geometric network models, in which nodes are arranged on a lattice and edges are formed with
a probability that decays with the distance between nodes. We present analytical solutions for the numbers of
all three- and four-node subgraphs, in both directed and nondirected geometric networks. We also analyze
geometric networks with arbitrary degree sequences and models with a bias for directed edges in one direction.
Scaling rules for scaling of subgraph numbers with system size, lattice dimension, and interaction range are
given. Several invariant measures are found, such as the ratio of feedback and feed-forward loops, which do
not depend on system size, dimension, or connectivity function. We find that network motifs in many real-
world networks, including social networks and neuronal networks, are not captured solely by these geometric
models. This is in line with recent evidence that biological network motifs were selected as basic circuit
elements with defined information-processing functions.
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I. INTRODUCTION

Many systems in nature can be represented as complex
networksf1–5g. Often, natural and engineered networks have
an underlying geometric arrangement. In such networks,
nodes are embedded in a geometric space and edges tend to
link nodes that are close neighborsf6–11g. Examples include
the physical layout of the internetf12–15g, transportation
networks f16,17g, and power gridsf4,15g, as well as net-
works of wiring between neuronsf18–21g or cortical areas
f22–24g.

A geometric constraint does not have to be of spatial ori-
gin. In models of socialf25g or World Wide Web networks
f26,27g, nodes may be assigned attributesse.g., language and
field of interest of web pages, occupation and residence in
social networksd and links may be correlated with closeness
in this attribute spacef28,29g. Geometric networks can also
arise from analysis of multivariate data sets. For example,
networks have been proposed to describe gene expression
f30g or economic data setsf31g, where distance between
nodes corresponds to a high correlation coefficient in the
data set. These networks can be embedded in a high-
dimensional Euclidean vector space.

Many networks have been recently found to display net-
work motifs f5,15,21,32,33g: a characteristic set of recurring
subgraphs. Network motifs occur much more often than in
randomized networks with the same degree sequence. Differ-
ent networks usually display different motifs, and motifs can
be used to characterize families of networksf15g. In biologi-
cal regulation networks, it has been experimentally demon-
strated that each of the motifs can carry out a key informa-
tion processing functionf5,34–41g.

It is of interest to study the origin of network motifs in
each real-world network. In particular, it is of interest to

compare the local network structure to that of model net-
works which have a similar geometric constraint. For ex-
ample, the researchers who mapped the neuronal wiring of
C. elegansspeculated that “The abundance of triangular con-
nections in the nervous system ofC. elegansmay thus sim-
ply be a consequence of the high levels of connectivity that
are present within neighborhoods”f18g. An analysis of the
abundance of subgraphs in purely geometric networks can
help discern whether the motifs arise based on simple geom-
etry or whether they arise due to additional optimization or
design.

To address this, we study geometric network models, in
which nodes are arranged on a lattice and edges are placed
randomly between nodes with a probabilityFsrd that decays
with the distance between nodes. Several features of related
models were previously studiedf6–11g. These features in-
clude degree distributionsf6–8g, diametersf9g, and cluster-
ing coefficientsf10g. Geometric networks have been shown
to be optimal for minimizing physical connection lengths
f9,22g.

Here we focus on the subgraph content of these networks.
We consider nondirected and directed networks, as well as
cases where directed edges are biased in a particular spatial
direction. We present an analytical solution for the numbers
of small subgraphs and the scaling of all types of subgraphs
with system size and lattice dimensionality. We find invari-
ants that can be used to easily compare networks to geomet-
ric models.

II. RESULTS

A. Nondirected geometric model

In the geometric model,N nodes are arranged in a
d-dimensional Euclidean lattice with toroidalscontinuousd
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boundary conditionssFig. 1d.1 Nondirected edges are placed
at random according to a connectivity functionFsx,yd
fwhere Fsx,yd=F(rsx,yd), and r is the distance between
nodesx and yg. For each pair of nodesx and y, a random
numberp is generated and an edge is placed ifp,Fsx,yd.
Fsrd is a decaying function with a finite rangeR. We con-
sider the case whereR is much larger than the lattice spacing
sR@1d but where the effective connectivity neighborhood of
each node is much smaller than the system size,Rd!N. In
this case, the mean number of edges per node is

kkl =E Fsrdddr . s1d

The degree distribution, the distribution of number of edges
per node,Pskd, is Poissonian, with a mean ofkkl sassuming
that Fsrd decays sufficiently rapidly2d. Therefore, a random
network ensemble that preserves the degree distribution of
the geometric network is the Erdős-Rényi modelf42–45g
with N nodes where edges are placed at random with prob-
ability pErd=kkl /N.

We now calculate the mean number of appearances of a
given subgraph in the geometric model. The probability for
the subgraph may be expressed in terms of overlap integrals
of the function Fsrd. For example, the triangle subgraph
tends to occur when three nodesx, y, andz are sufficiently
close, as expressed by the formula for the mean number of
triangles

kGDl =
N

6
E E Fs0,yd ·Fs0,zd ·Fsy,zdddyddz, s2d

where without loss of generalityx is at the origin. The factor
of 1/6 is due to the symmetry, where the same triangle can
be counted ify or z serves as the origin and ify and z are
interchanged whenx is the origin. The symmetry factor can
be calculated based on the symmetry of each subgraphsone
over the number of permutations of nodes that produce an
isomorphic subgraphd.

In Table I, we present the number of appearances of all
three- and four-node subgraphs in a nondirected geometric
network. The results in the table apply to the case of sparse
networks, wherekkl!Rd sas occurs in almost all real world
networksd. The results are for two connectivity functions
sFig. 2d. The first is a Gaussian connectivity function, where

Fgsrd = kkls2pR2d−d/2exps− r2/2R2d s3d

and where

r2 = o
i

sxi − yid2 s4d

is theL2 norm. hxij and hyij denote thed-dimensional coor-
dinates of nodesx andy. The second connectivity function is
a hard-cube connectivity function:

Fcsrd = kkls2Rd−dQsr , Rd, s5d

where

r = maxusxi − yidu s6d

is the L` norm andQ is a step function. Similar overlap
integralssAppendix Ad and connectivity functions appear in
the calculation of virial coefficientsf59g and in calculations
of percolation thresholdsf60g.

B. Scaling of subgraph numbers with system size and
dimension

We present a simple scaling argument for the subgraph
content of geometric networks. In this picture, the neighbor-
hood of each node at distances smaller thanR is similar to an
Erdős-Rényi network. The number of appearances of a sub-
graph withn nodes andg edges in an Erdős-Rényi network
of sizeNE and mean connectivitykkl has been shown to scale
as f45,46g

kGErdl , NE
n−gkklg. s7d

In total, there are on the order ofN/Rd such Erdős-Rényi-
like domains in the entire network, each one of sizeNE=Rd.
Therefore, the scaling of the number of appearances of sub-
graphG in the geometric network is

kGgeoml , sN/RddNE
n−gkklg, s8d

which results in

kGgeoml , NRsn−g−1ddkklg. s9d

All subgraphs in the geometric network scale with net-
work sizeN as kGgeoml,N sTable Id. This is in contrast to

1We treat square lattices although the results can be readily gen-
eralized to other lattice types.

2The degreek is the sum of random independent Poissonian vari-
ablesksrd which represent the number of links to nodes within a
shell at distancer.

FIG. 1. Nondirected geometric networks and their randomized
versions.sad One-dimensionals1Dd geometric network withN=40,
R=7, and kkl=2. sbd 1D randomized versionseach node has the
same degree as in the network ofsadd. scd 2D geometric network
with N=900,R=1, andkkl=2. sdd 2D randomized version. The 2D
network shown has noncontinuous boundary conditions, for clarity.
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Erdős-Rényi networks, in whichG,Nn−g. Therefore, in the
limit of large system size, all subgraphs in whichgùn will
be network motifs. These include triangles, squares, and ag-
gregates of triangles.

The present scaling argument also provides the regime in
which finite-size effects begin to be important. Finite-size
effects begin whenRd,N. WhenRd.N, the entire network

essentially behaves as an Erdős-Rényi network and the scal-
ing crosses over to Erods-Rényi scalingsFig. 3; see also
f10gd.

The scaling relations can also be written in terms of the
network clustering coefficientf1–4,47–49g, which is related
to the ratio of triangles to V-shaped subgraphssTable Id:

TABLE I. Numbers of nondirected three- and four-node subgraphs in the geometric model withN nodes, mean connectivitykkl, range
R, and dimensiond. Prefactorsf are for the 1D and 2D Gaussian connectivity functionsfGd and hard-cube connectivity functionsfhcd. Also
shown are the mean number of subgraphs in Erdős-Rényi networks with mean connectivitykkl. Stars represent subgraphs that are network
motifs in the limit of large system sizesN@Rdd.

FIG. 2. Gaussiansdashed lined and hard-cubesbold lined con-
nectivity functions.

FIG. 3. Scaling regimes of the geometric modelsN=5000,d
=1,k=4d. At low R/N ratios triangles scale assR/Nd−1. At high
R/N ratios the network effectively resembles an Erdős-Rényi net-
work and triangles scale assR/Nd0.

SUBGRAPHS AND NETWORK MOTIFS IN GEOMETRIC… PHYSICAL REVIEW E 71, 026117s2005d

026117-3



C = 3
G2

G1
,

kkl
Rd . s10d

Inserting this into Eq.s9d we get

kGgeomsn,gdl , NCg−n+1kklsn−1d. s11d

In geometric networks, knowingC and kkl is sufficient to
find the scaling of all subgraphs. This is not the case for
other types of networks: In general, in nongeometric net-
works C does not determine the number of four-node pat-
terns se.g., squares—pattern 6 in Table Id or larger
subgraphs.

C. Directed isotropic geometric model

We now consider the case where each edge has a direc-
tion, yielding a directed network. This network is built in the
same way as the nondirected network, except that each pair
of nodesx, y is considered twice, and directed edges can

connectx to y and y to x. The mean number of outgoing
edges per node is equal to the mean number of incoming
edges:

kkinl = kkoutl =E Fsrdddr . s12d

We find that the same scaling arguments hold. The subgraphs
fall into classes according to the number of nodes and edges
n, g. Table II shows the result for three-node subgraphs for
d=1 and 2. The three-node subgraphs fall into five classes,
corresponding to subgraphs withg=2, 3, 4, 5, and 6 edges.
In each class, the scaling is the same, but the prefactors gen-
erally differ and depend on the dimensionality and on the
form of Fsrd.

D. Geometric networks with arbitrary degree sequences

Real-world networks often have degree sequences which
are quite different from Poissonian. For example, many net-
works have heavy-tailed degree distributionsf1–4,50–57g.

TABLE II. Numbers of directed three-node subgraphs in the directed geometric model withN nodes, mean connectivitykkl, rangeR, and
dimensiond. Subgraphs are grouped according to number of edges. Prefactorsf are for the 1D and 2D Gaussian connectivity functionsfGd
and hard-cube connectivity functionsfhcd. Field factors ssection Fd are for the 1D Gaussian modelsa=0.27, b=0.365,c=0.73, d
=0.135d. Also shown are the mean number of subgraphs in Erdős-Rényi networks with mean connectivitykkl. Stars represent subgraphs that
are network motifs in the limit of large system size. Note that subgraphs 4, 5, and 8 are not network motifs when compared to randomized
networks that preserve the degree distribution of both single and mutual edgesf15,33,46g.
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A heavy-tailed degree distribution in random networks
has been shown to strongly affect the frequency of certain
subgraphsf46g. In particular, certain subgraphs appear much
more often in random networks with heavy-tailed degrees
than in Erdős-Rényi networks. For example, subgraphs in
networks with a scale-free out-degreePskd,k−g and com-
pact in-degree have been shown to scale with network sizeN
as f46g

kGl , Na, s13d

wherea is related to the number of subgraph nodesn, sub-
graph edgesg, and maximal subgraph out-degrees:

a = 5 n − g + s− 1, g ø 2,

n − g + s− g + 1, 2, g , s+ 1,

n − g, g ù s+ 1.
6 s14d

The geometric models discussed above have a Poissonian
degree distribution. An interesting extension of geometric
models, which allows for a heavy-tailed sequence, has been
recently studied by Rozenfeldet al. The scaling of path
lengths in that model was derivedf11g.

Here, we consider subgraphs in a related, directed lattice
model, with an arbitrary outgoing degree sequencePskd
which can be heavily tailed. In this model, each node in the
lattice is assigned a degreek drawn from the distribution
Pskd. k outgoing edges are then randomly connected to other
nodes according to the connectivity functionFsrd. This re-
sults in a geometric model, with outgoing degree distribution
Pskd, and a compact incoming degree distribution. We note
that several real-world directed networks have compact in-
degree and heavy tailed out-degree, including biological
f32,33g and technological networksf56,57g.

We now derive scaling relations for the number of sub-
graphs in geometric networks with a heavy-tailed outgoing
degree sequence:

Pskd , k−g. s15d

We consider the limit where the hubs in the network do not
exceed the typical size of the neighborhood of each node,
which scales asRd. The mean hub size scales as
f11,46,54,55g

T , N1/sg−1d. s16d

Thus, we consider the case whereN1/sg−1d!Rd!N.
The network can be considered as a collection ofN/Rd

subnetworks of sizeNn=Rd, each with scaling according to
Eq. s13d. For the entire network, one finds that the number of
subgraphsG scales as

kGl , sN/RddNn
a = NRsa−1dd, s17d

with a given in Eq.s14d. All subgraphs numbers scale asN
and have anR dependance that depends ong and the sub-
graph topology. Subgraphs with large maximal out-degrees
tend to appear more often than subgraphs with smallers.

E. Invariant ratios

It is of interest to find invariant measures which apply to
geometric networks independent of the dimensionalityd and
the form of Fsrd. Several such invariants can be found. An
example is the ratio of the numbers of two subgraphs, the
feedback loop and the feed-forward loopssubgraphs 6 and 7
in Table IId. The ratio of these two subgraphs is 1:3, regard-
less ofd andFsrd. Similarly, the ratio of subgraphs 9, 10, and
11 is 1:2:1. Table III shows these ratiossratios 1 and 2d for
several real world networks. The ratios in real-world net-
works generally differ significantly from the ratios in isotro-
pic geometric networks.

The above ratios are invariant in the Poissonian geometric
model, but can change if one considers geometric networks
with an arbitrary degree sequence. For example, the feed-
forward loop subgraphssubgraph 7 in Table IId has a node

TABLE III. Subgraph ratios in real-world networks and in the geometric model. Networks aresid social network 1 off15g, N=67, E
=182, sii d WWW hyperlink network 3 off15g ssourcef27gd, N=47978,E=235441,siii d neural synaptic connections inC. elegans, N
=280,E=2170f15,18g, andsivd strong neural synaptic connections inC. elegans, N=280,E=400 f21g sonly connections with 5 or more
synapsesd. Values in parenthesis are the absolute count for the subgraph taken as 1 in the ratio. The ratios for the isotropic geometric model
sp=1d apply to the Poissonian model and for any dimension and connectivity function. Ratios 3 and 4 in the isotropic model apply also to
geometric networks with arbitrary degrees. The ratios for the fully biased anisotropic geometric modelsp=0d apply to the 1D geometric
model with Gaussian connectivity function. In ratios 3 and 4 for the WWW network a sampling algorithm for subgraph counting was applied
f58g with 106 samples.
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with two outgoing edgesss=2d, whereas the feedback loop
ssubgraph 6 in Table IId has s=1. This would result in an
increased abundance of feed-forward loops for geometric
networks with heavy-tailed degree sequence.

We therefore sought ratios of subgraphs which do not
depend on the degree sequence. These are subgraphs which
have the same subgraph degree sequences. The class of four-
node directed subgraphs contains several examples of sub-
graphs with identical degree sequences. Two examples are
shown in Table IIIsratios 3 and 4d. These ratios are invariant
with respect to the degree sequence of the network model, as
well as to the dimensionalityd and the form ofFsrd.

F. Directed anisotropic geometric model

In some systems there are preferred directions in which
the probability of a directed connection is larger than in other
directions. To model this, we consider ad=1 lattice and in-
troduce a bias that favors edges in one direction. In this case,
a probability of a directed edge to the right isFright=pFsrd
and an edge to the left isFleft=qFsrd, such thatp+q=2 sthe
sum=2 is chosen to preserve the same mean connectivitykkl
as for the isotropic modeld. The calculation is somewhat
more intricate in this case, as the overlap integrals must be
evaluated for different orderings of the nodessAppendix Bd.
The expression for each subgraph is multiplied by a “field
factor,” which depends on the subgraph topology. The results
for three-node directed subgraphs are shown in Table II.

The scaling is the same as in the isotropic case, except in
the limit p=0 sor q=0d. In the latter limit, no cycles are
allowed sthe network is a directed acyclic graphd. The only
closed three-node pattern is the feed-forward loopssubgraph
7 in Table IId.

The relative abundance of the various subgraphs depends
on the “field” 1−p sTable IId. Subgraphs with mutual edges
sedges in both direction between two nodesd are biased
against since mutual edges always contain one edge that goes
against the field. The ratios that were invariant in the isotro-
pic case are no longer independent ofd andFsrd. Several of
these ratios are plotted as a function of 1−p in Fig. 4. Table
III shows the ratios in real-world networks for the fully bi-
ased anisotropic geometric network.

III. DISCUSSION

This study presented analytical results for the subgraph
content of geometric network models. We found scaling rules

for the number of appearances of each subgraph as a function
of network size and lattice dimensionality. The scaling is
very different from Erdős-Rényi networks for most sub-
graphs. We find certain ratios of subgraph appearances in
isotropic directed geometric networks, which are “invari-
ants” in the sense that they do not depend on dimension and
connectivity function.

Geometric networks show distinct network motifs. All of
the subgraphs scale asN1, whereas they scale asNn−g in the
corresponding random networks with the same degree se-
quence. Therefore all subgraphs withgùn are network mo-
tifs in geometric networks. In most real-world networks stud-
ied so far, only a subset of these subgraphs are network
motifs f15,21,32,33g, suggesting that additional constraints
or optimization is at play, beyond isotropic geometric con-
straints.

The network motifs in real-world networks appear to be
“extensive variables,” in the sense that their concentration
c=G/N does not decrease withN, but scales asN0 f33g,
whereas their concentration in corresponding randomized
networks decreases withN. A similar property is found for
the concentration of motifs in geometric networks, which
scales asc=G/N,N0 and c=G/N,Nn−g−1,N−1 in ran-
domized networks.

Table III shows that the abundance of feedback loops rela-
tive to feed-forward loops in social and World Wide Web
networks is much less than expected from an isotropic geo-
metric constraint.3 Social networks which represent positive
sentiments between individuals in a group are known to be
rich in transitive relationsf15,61,62g: If X “likes” Y and Y
likes Z, X tends to also likeZ. In these networks, intransitive
triplets of nodessX→Y, Y→Z, but XyZd are known to be
relatively rare. Feedback loops might be rare because they
contain three intransitive triplets and no transitive triplets.
The feed-forward loop, on the other hand, contains one tran-
sitive triplet and no intransitive triplets. This might also ex-
plain the relative rarenessf15,61g of subgraph 10 of Table II,
which contain one transitive and two intransitive triplets, as
opposed to two transitive and zero intransitive triplets in the

3This statement relates to a random ensemble of geometric net-
works which does not preserve the degree sequences of the real
network, only the mean connectivity and clustering coefficientsthe
Poissonian geometric modeld. In a more stringent random ensemble
which preserves the degree sequences, some of the subgraph ratios
change and depend on different moments of the degree sequences
sSec. II D f46gd.

FIG. 4. Three subgraph ratios for different field strengths in an anisotropic geometric model with Gaussian connectivity function.d
=1, N=2000,R=30, kkl=8. Shown are simulation resultssad–scd and theoretical curves, obtained from Table IIsad and Appendix Bsbd,scd.
Numerical standard errors are smaller than the dot size.
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more frequent subgraphs 9 and 11. Similar transitivity appear
to characterize the patterns formed by WWW linksf15g.

In the neuronal network ofC. elegansfeedback loops and
feedback loops with one mutual edgessubgraphs 6 and 10 in
Table IId are much less abundant then expected in isotropic
geometric networkssTable IIId. We analyzed two versions of
the neuronal network—a network which includes all synaptic
connections and a network which includes only “strong”
connections, where neurons are linked by an edge only if
they have five or more synapses connecting themf33g.

Interestingly, when one considers subgraphs with no mu-
tual edgessratios 1, 3, and 4 in Table IIId, the full neuronal
network of C. elegansdisplays similar subgraph ratios to a
highly anisotropic geometric modelswith field p!1d. Such a
field may represent a directed flow of information from sen-
sory neurons, generally located in the head, to motor neu-
rons. This model cannot, however, explain the abundance of
mutual edges in the network, which would not appear in
highly biased anisotropic geometric networks.

The subgraph ratios in the neuronal network of strong
connections is not consistent with either isotropic or aniso-
tropic geometric modelssTable IIId. It seems that the motifs
in this network do not solely stem from geometric constraints
and that additional optimization constraints based on biologi-
cal functionality are at playf5,15,18–21,33,58g. Indeed, in
transcriptional biological networks, network motifs have
been experimentally shown to function as pulse generators
f34,40g, asymmetric filtersf35g, response acceleratorsf36g,
and temporal pattern generatorsf37,38,41g.

The present scaling results also apply to the class of
small-world network modelsf4g. These models are obtained
by rewiring a limited fraction of the edges in a lattice model.
This leads to a substantial drop in the network diameter but
in a small change in the clustering coefficient.

The geometric model can be extended in many ways. One
can assign an arbitrary clustering coefficient for each node,
in addition to an arbitrary degree, by specifying both the
number of edges,ki, and a neighborhoodRi for each node
fEq. s10dg. This can form a more stringent comparison to
networks with broad degree sequences and clustering coeffi-
cient sequencesf48,49g or community structuref63–65g. In
addition, biases towards mutual edges can be added.

It would be of interest to extend this study to understand
the general relationship between global constraints on a net-
work and its local structuref5,9,66–69g.
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APPENDIX A: OVERLAP INTEGRALS FOR THE HARD-
CUBE CONNECTIVITY FUNCTION

The intersection integrals reduce to a simple form in the
case of the hard-cube connectivity functionFc. As an ex-
ample we will consider triangle subgraphs

kGDl =
N

6
Id =

N

6
E E Fs0,yd ·Fs0,zd ·Fsy,zdddyddz,

sA1d

where Id is the d-dimensional overlap integral. In the hard-
cube case it is sufficient to calculate the integral in one di-
mensionI1. For this connectivity function the axes are sepa-
rable, and the extension tod dimension is straightforward
f59,60g:

Id = I1
d. sA2d

I1 reduces to a one-variable integral:

I1 =E
−`

` E
−`

`

Fs0,yd ·Fs0,zd ·Fsy,zddydz

= S kkl
s2RdD

3E
−R

R

Osyddy

= S kkl
s2RdD

3E
−R

R

s2R− uyuddy

= S kkl
s2RdD

3

s3R2d

=
3

23kkl3R−1, sA3d

FIG. 5. Overlap areaOsyd=2R−y shaded in gray. All lattice
points within this area can connect to both the origins0d and toy.

FIG. 6. Orientations used in the calculations of the field factor
for the feedback loop in the anisotropic geometric model. They-z
plane is divided into six regions of integration, and the weighting
factors are shown above the subgraph diagrams.
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whereOsyd is the overlap area, which includes all positions
of z which are in the rangeR of both 0 andy sFig. 5d.

Extending these results to all directed types of triangles
sTable IId and arbitrary dimension yields

kGl = sS 3

2gDd

NRsn−g−1ddkklg, sA4d

wheres is a symmetry function equal to 1 over the number
of permutations of nodes that lead to an isomorphic sub-
graph. EquationsA4d contains the scaling of Eq.s9d. The
prefactors depend on the symmetry function and on the di-
mension and decrease withd. The extension of Eq.sA4d to
larger subgraphs is

kGl = sSvG

2gDd

NRsn−g−1ddkklg sA5d

wherevG is the factor stemming from the 1D overlap inte-
gral, which depends on the nondirected version ofG. These
factors have been calculated inf59g for subgraphs of up to
seven nodes. The prefactors for all nondirected four-node
subgraphs are given in Table II.

APPENDIX B: CALCULATION OF FIELD FACTORS

Here we describe the method for calculating the field fac-
tors for the three-node subgraphs in the 1D anisotropic geo-
metric model. We fix one node at the origins0d. The two

remaining nodes are denoted byy andz. The formula for the
subgraph occurrences are similar to Eq.s2d, but here differ-
ent integration domains are weighted by different field fac-
tors, depending on the orientation of the three nodes. The
y-z plane is divided into six regions which correspond to the
3! linear ordering of the three subgraph nodes. These regions
are generally weighted differently. An example for the feed-
back loop is shown in Fig. 6. For this subgraph symmetries
lead to a simplified expression for the field factorw:

w =
1

2
pqsp + qd = pq. sB1d

For n-node subgraphs one should calculate the
sn−1d-dimensional integral overn! hypervolumes, corre-
sponding to all linear ordering of the subgraph nodes. For the
case of the four-node subgraphs of the invariant ratios pre-
sented in Figs. 4sbd and 4scd, this calculation results in the
following theoretical curves:

rb =
bsp4 + q4d + 4sa + cdpqsp2 + q2d + 6bp2q2

asp4 + q4d + 2bpqsp2 + q2d + 2sa + 2cdp2q2 , sB2d

wherea=1.1310−2, b=8.8310−3, c=5.4310−3, and

rc =
1

2

hsp2 + q2d + s2e+ 2f + g − hdpq

esp2 + q2d + s2f + g + hdpq
, sB3d

where e=2.35310−3, f =1.9310−3, g=3.8310−3, and h
=1.8310−3.
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