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Many real-world networks describe systems in which interactions decay with the distance between nodes.
Examples include systems constrained in real space such as transportation and communication networks, as
well as systems constrained in abstract spaces such as multivariate biological or economic data sets and models
of social networks. These networks often display network motifs: subgraphs that recur in the network much
more often than in randomized networks. To understand the origin of the network motifs in these networks, it
is important to study the subgraphs and network motifs that arise solely from geometric constraints. To address
this, we analyze geometric network models, in which nodes are arranged on a lattice and edges are formed with
a probability that decays with the distance between nodes. We present analytical solutions for the numbers of
all three- and four-node subgraphs, in both directed and nondirected geometric networks. We also analyze
geometric networks with arbitrary degree sequences and models with a bias for directed edges in one direction.
Scaling rules for scaling of subgraph numbers with system size, lattice dimension, and interaction range are
given. Several invariant measures are found, such as the ratio of feedback and feed-forward loops, which do
not depend on system size, dimension, or connectivity function. We find that network motifs in many real-
world networks, including social networks and neuronal networks, are not captured solely by these geometric
models. This is in line with recent evidence that biological network motifs were selected as basic circuit
elements with defined information-processing functions.
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[. INTRODUCTION compare the local network structure to that of model net-
Jyorks which have a similar geometric constraint. For ex-

Many systems in nature can be represented as compl -
y 3y P P mple, the researchers who mapped the neuronal wiring of

networks 1-5]. Often, natural and engineered networks have? b .
an underlying geometric arrangement. In such network . eleganspeculated that “The abundance of triangular con-

s = . i
nodes are embedded in a geometric space and edges tendﬁ ctions in the nervous system Gf elegansmay thus sim-

, . . be a consequence of the high levels of connectivity that
link nodes that are close neighb$6s-11]. Examples include Py e : . :
the physical layout of the interndl2-185, transportation are present within neighborhoodgf8]. An analysis of the

. abundance of subgraphs in purely geometric networks can
Cv%tﬁgrgf [vti?i'r}ﬂ'b:'[\]/segr?\,\rl]irurgor:g;[;—é%oa:sc(\;vrﬁlcl:a?sarg?; help discern whether the motifs arise based on simple geom-
[22-24 9 etry or whether they arise due to additional optimization or
e . . . .design.
inA .%eﬁfgggf g?gztgg[nztg]j%isvcgrtlg%z%;ovsgboziﬁgﬁlsor" To address this, we study geometric network models, in
gm. which nodes are arranged on a lattice and edges are placed

126,27, nodes may be assigned attributeg., language and .randomly between nodes with a probabiliyr) that decays

field of interest of web pages, occupation and residence in. ;
social networksand links may be correlated with closenessw'th the distance between nodes. Several features of related

s . . models were previously studigé—11]. These features in-
in this attribute spacf28,29. Geometric networks can also clude degree distribution—8], diameterg9], and cluster-

arise from analysis of multivariate data sets. For example, coefficients[10]. Geometric networks have been shown
networks have been proposed to describe gene expressi : T X .
0 be optimal for minimizing physical connection lengths

[30] or economic data seti31], where distance between ég 27

nodes corresponds to a high correlation coefficient in th Here we focus on the subaraph content of these networks
data set. These networks can be embedded in a high- . . grap '
We consider nondirected and directed networks, as well as

dimensional Euclidean vector space. cases where directed edges are biased in a particular spatial
Many networks have been recently found to display net- g P P

work motifs[5,15,21,32,38 a characteristic set of recurring direction. We present an analyti(;al solution for the numbers
subgraphs. Network motifs occur much more often than inOf. small subgr.aphs and the sc.allng Qf aII_types Of. sul_)grap_hs
randomized networks with the same degree sequence. Diffe\f\-”th system size and lattice _d|men5|onal|ty. We find invari-
ent networks usually display different motifs, and motifs cana.nts that can be used 1o easily compare networks to geomet-
be used to characterize families of netwofk§]. In biologi- ric models.
cal regulation networks, it has been experimentally demon- Il. RESULTS
strated that each of the motifs can carry out a key informa-
tion processing functiof5,34—-41.

It is of interest to study the origin of network motifs in In the geometric modeIN nodes are arranged in a

each real-world network. In particular, it is of interest to d-dimensional Euclidean lattice with toroidétontinuou$

A. Nondirected geometric model
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<GA>=§ f f F(0y) -F(0,2) -F(y,2d%d%z, (2

where without loss of generalityis at the origin. The factor
of 1/6 is due to the symmetry, where the same triangle can
be counted ify or z serves as the origin and yfand z are
interchanged whew is the origin. The symmetry factor can
be calculated based on the symmetry of each subgi@d
over the number of permutations of nodes that produce an
isomorphic subgraph

In Table I, we present the number of appearances of all
three- and four-node subgraphs in a nondirected geometric
network. The results in the table apply to the case of sparse
networks, whergk)<RY (as occurs in almost all real world
networks. The results are for two connectivity functions
(Fig. 2). The first is a Gaussian connectivity function, where

FIG. 1. Nondirected geometric networks and their randomized Fg(r) = <k>(27TR2)_d/29XF3(‘ r?/2R?) (3
versions.(a) One-dimensionallD) geometric network witiN=40, and where
R=7, and(k)=2. (b) 1D randomized versiolteach node has the
same degree as in the network (@f). (c) 2D geometric network r2= 2 (% _yi)z (4)
with N=900,R=1, and(k)=2. (d) 2D randomized version. The 2D i

network shown has noncontinuous boundary conditions, for clarity, . .
is the L2 norm. {x;} and{y;} denote thed-dimensional coor-

dinates of nodeg andy. The second connectivity function is

. . 1 .
boundary condition$Fig. 1).” Nondirected edges are placed a hard-cube connectivity function:

at random according to a connectivity functidf(x,y)
[where F(x,y)=F(r(x,y)), and r is the distance between F.(n) =(k)(2R) MO (r <R), (5)
nodesx andy]. For each pair of nodes andy, a random
numberp is generated and an edge is placeg F(x,y).
F_(r) is a decaying fu_nction with a finite rande We con- r=max(x - y;)| (6)
sider the case wheRis much larger than the lattice spacing . . ) ) o

(R>1) but where the effective connectivity neighborhood of i the L™ norm and® is a step function. Similar overlap
each node is much smaller than the system $¥e<N. In integrals(Appendix A and connectivity functions appear in

this case, the mean number of edges per node is the calculation of virial coefficientg59] and in calculations
' of percolation thresholdgs0].

where

(k) :J F(r)dr. (1) B. Scaling of subgraph numbers with system size and
dimension

The degree distribution, the distribution of number of edges We present a simple scaling argument for the subgraph
per nodeP(k), is Poissonian, with a mean ¢) (assuming content of geometric networks. In this picture, the neighbor-
that F(r) decays sufficiently rapidfy. Therefore, a random hood of (,aac.h node at distances smaller tRas similar to an
network ensemble that preserves the degree distribution d¥rdés-Rényi network. The number of appearances of a sub-
the geometric network is the EistRényi model[42—45  graph withn nodes andy edges in an Eigs-Rényi network
with N nodes where edges are placed at random with probof sizeNg and mean connectivit§k) has been shown to scale
ability pgg=(k)/N. as[45,46

We now calculate the mean number of appearances of a (Gerg) ~ N9k 7)
given subgraph in the geometric model. The probability for Erd E '
the subgraph may be expressed in terms of overlap integrals In total, there are on the order bff R such Erds-Rényi-
of the function F(r). For example, the triangle subgraph like domains in the entire network, each one of dige=R%.
tends to occur when three nodesy, andz are sufficiently — Therefore, the scaling of the number of appearances of sub-
close, as expressed by the formula for the mean number gfraphG in the geometric network is

triangles (Ggeom ~ (N/RONK)S, (8

YWwe treat square lattices although the results can be readily geIWhiCh results in
erzallzed to other lattice types. _ _ _ _ (Ggeon ~ NRM9-Dd(jy9, 9)
The degree is the sum of random independent Poissonian vari-
ablesk(r) which represent the number of links to nodes within a  All subgraphs in the geometric network scale with net-
shell at distance. work sizeN as(Ggeom ~N (Table ). This is in contrast to
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TABLE I. Numbers of nondirected three- and four-node subgraphs in the geometric mod@ wittles, mean connectivitk), range
R, and dimensionl. Prefactord are for the 1D and 2D Gaussian connectivity functifg) and hard-cube connectivity functidf,.). Also
shown are the mean number of subgraphs in3&/ényi networks with mean connectivity). Stars represent subgraphs that are network
motifs in the limit of large system sizeN>RY).

subgraph pattern |nodes|edges |geometric model|  1d fg 2d fo  |1d fae| 2d fre |Erdés-Rényi
IRVAN 3 | 2 fiN(k)? 21 2! 2-1 | 27! | N(k)?/2
o A 3 | 3 | fNE?RE | 6vem)~! | (367)7' | 3/48 | 3/128 | (k)%/6
3 AN 4 | 3 FsN (k) 67! 6! 61 | 67! | N(k)?*/6
4 [ 4 | 3 faN (k) 9-1 -1 271 | 271 | N(kY3/2
5= /N | 4 | 4 | fsN(k)*/R? (2vBm)~' | (12m)7! | 3/16 | 9/128 | (k)%/2
e« [ 4 | 4 | fNEYR' | (6vEIDT' | (64m)7 | 1/24| 1/72 (k)*/8
=~ N 4 5 | fN(k)S/R* | (16,/(2)m)' | (64m)~! |7/192 49/9216| (k)°/4N
g X 4 6 | fsN(k)®/R3 |(192v/27%/2)~1((3072x%)~1|1/384 | 1/6144 | (k)®/24N?

Erdés-Rényi networks, in whiclis ~N""9, Therefore, in the essentially behaves as an BseRényi network and the scal-

limit of large system size, all subgraphs in whigks n will ing crosses over to Erods-Rényi scalifigig. 3; see also
be network motifs. These include triangles, squares, and ag10]).
gregates of triangles. The scaling relations can also be written in terms of the

The present scaling argument also provides the regime inetwork clustering coefficieritl—4,47—49, which is related
which finite-size effects begin to be important. Finite-sizeto the ratio of triangles to V-shaped subgrajfiable I):
effects begin wheiRd~ N. WhenRY> N, the entire network

4
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R FIG. 3. Scaling regimes of the geometric modbl=5000d

=1,k=4). At low R/N ratios triangles scale a&R/N) 1. At high
FIG. 2. Gaussiaridashed ling and hard-cubébold line) con- R/N ratios the network effectively resembles an &dRényi net-
nectivity functions. work and triangles scale 4&/N)°.
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TABLE Il. Numbers of directed three-node subgraphs in the directed geometric modél wates, mean connectivitk), rangeR, and
dimensiond. Subgraphs are grouped according to number of edges. Prefae@dor the 1D and 2D Gaussian connectivity functifg)
and hard-cube connectivity functioff,.). Field factors(section F are for the 1D Gaussian mod¢xa=0.27,b=0.365,c=0.73,d
=0.139. Also shown are the mean number of subgraphs irb&RIényi networks with mean connectivify). Stars represent subgraphs that
are network motifs in the limit of large system size. Note that subgraphs 4, 5, and 8 are not network motifs when compared to randomized
networks that preserve the degree distribution of both single and mutual gdgas,46.

subgraph pattern |edges|geometric model| 1d fo 2d fo | 1d fac | 2d fac |Erdés-Rényi|field factor (section F)
1 VAN 2 fiN (k)? 271 2t 271 271 N (k)2 /2 1
2 i 2 f2N(k)? 1 1 1 1 N (k)2 1
3 \/ 2 faN{k)? 2-t 21 2-! 2! N (k) /2 1
4% N 3 | ANKE/RY | (2ym)7 dr~? 2 47 (k)* pq
5* N 3 fsNRY? /R | (2ym)7 4nt 2! 4! (k)* Pq
6 * AN 3 | feNW/R' | 3v6m) | (18m)7" | (3/8)/3 | (3/8)%/3 | (k)*/3 Pq
SRNAY I fN()?/RY | (Vom)t | 6n 3/8 | (3/8)° (k)® (v° +dpg +¢°)/6
8 * N 4 | feNRY/RM | (8m)7' | (32n®)7 | (1/4)/2 | (1/4)%/2 | (k)*/2N p’e?
x| foN(RY*/R* | (4vBm)™" | (40n%) 7" |(3/16)/2|(3/16)2/2| (k)*/2N | pglapg+b(p* +¢*)]
0 S|y foN(k)*/R* | (2vBm) ™ | (200" | 3/16 | (3/16) | (K)*/N | palepg +d(p* +¢°)]
11 * VAN 4 | fN®EYR* | (@/Em) 7 | @or) 7" ((3/16)/2|(3/16)°/2| (k)*/2N | palapg + b(p? + ¢*)]
12 * VAN 5 | fiNE)S/R¥ | 823271 | (64n%)™" | 3/32 | (3/32)2 | (k)®/N? P2
13 * -& 6 | fsN(k)®/R* |(48v3r%) 7" |(11527%) 7| (3/64)/6|(3/64)2/6| (k)®/6N? P3¢

G, (K connectx to y andy to x. The mean number of outgoing
C:3al TR (100 edges per node is equal to the mean number of incoming
edges:

Inserting this into Eq(9) we get
<kin>:<kout>:f F(r)d. (12
<Ggeor’r(n1g)> -~ Ncg—n+1<k>(n—1)_ (11
We find that the same scaling arguments hold. The subgraphs
In geometric networks, knowin@ and (k) is sufficient to  fall into classes according to the number of nodes and edges
find the scaling of all subgraphs. This is not the case fon, g. Table Il shows the result for three-node subgraphs for
other types of networks: In general, in nongeometric netd=1 and 2. The three-node subgraphs fall into five classes,
works C does not determine the number of four-node patcorresponding to subgraphs wigix2, 3, 4, 5, and 6 edges.
terns (e.g., squares—pattern 6 in Table br larger In each class, the scaling is the same, but the prefactors gen-
subgraphs. erally differ and depend on the dimensionality and on the
form of F(r).

C. Directed isotropic geometric model

We now consider the case where each edge has a direc- D. Geometric networks with arbitrary degree sequences

tion, yielding a directed network. This network is built in the ~ Real-world networks often have degree sequences which
same way as the nondirected network, except that each paire quite different from Poissonian. For example, many net-
of nodesx, y is considered twice, and directed edges canworks have heavy-tailed degree distributigtis4,50-57.
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TABLE lIl. Subgraph ratios in real-world networks and in the geometric model. Networké)asecial network 1 of15], N=67, E
=182, (ii)) WWW hyperlink network 3 of{15] (source[27]), N=47978,E=235441,(iii) neural synaptic connections i@. elegans N
=280,E=2170[15,18, and(iv) strong neural synaptic connections@ elegansN=280,E=400[21] (only connections with 5 or more
synapses Values in parenthesis are the absolute count for the subgraph taken as 1 in the ratio. The ratios for the isotropic geometric model
(p=1) apply to the Poissonian model and for any dimension and connectivity function. Ratios 3 and 4 in the isotropic model apply also to
geometric networks with arbitrary degrees. The ratios for the fully biased anisotropic geometric(pro@elapply to the 1D geometric
model with Gaussian connectivity function. In ratios 3 and 4 for the WWW network a sampling algorithm for subgraph counting was applied
[58] with 10° samples.

ratios social WWW neurons-all  |neurons-strong|geometric p = 1|geometric p — 0
1 AA 113(1) 11400 (620) 1(72) : 22 0:40 1:3 0:1
QV:&:A 1:03:05(15) {1:0.04:1.9(1.4-10°%)|1:0.4:0.6 (504) 0:4:7 1:2:1 1(0):08:1
3 <><> 3:1(1) 0.3 : 1(1140) 0.84: 1(3027) | 0.08 : 1(106) 2:1 08:1
4 m@ 0:0 1:0.23 (163) 1:1.9(56) 0:0 1:2 1(0): 2.5

A heavy-tailed degree distribution in random networks P(k) ~ k™. (15)
has been shown to strongly affect the frequency of certain . o )
subgraph$46]. In particular, certain subgraphs appear muchVve consider thg I|m|t' where the hgbs in the network do not
more often in random networks with heavy-tailed degree€Xceed the typical size of the neighborhood of each node,
than in Erdis-Rényi networks. For example, subgraphs inWhich scales asR%. The mean hub size scales as
networks with a scale-free out-degré¢k) ~k™” and com- [11,46,54,5%
pact in-degree have been shown to scale with networkhize T~ NYO-D, (16)
as[46]
Thus, we consider the case whé¥"Y <RI<N.
(G) ~ N¢, (13) The network can be considered as a collectioNOR?
subnetworks of siz&,=R%, each with scaling according to
whereq is related to the number of subgraph nodesub-  Eg.(13). For the entire network, one finds that the number of

graph edgeg, and maximal subgraph out-degree subgraphss scales as
n-g+s-1, y<2, (G) ~ (NIRON,* = NR ™1, (17
a=in-g+s—y+1, 2<y<s+1, (14)  with a given in Eq.(14). All subgraphs numbers scale Bs

and have arR dependance that depends grand the sub-
graph topology. Subgraphs with large maximal out-degree
The geometric models discussed above have a Poissonigend to appear more often than subgraphs with smaller
degree distribution. An interesting extension of geometric
models, which allows for a heavy-tailed sequence, has been
recently studied by Rozenfeldt al. The scaling of path
lengths in that model was derived1]. It is of interest to find invariant measures which apply to
Here, we consider subgraphs in a related, directed latticgeometric networks independent of the dimensionalignd
model, with an arbitrary outgoing degree sequemt&)  the form of F(r). Several such invariants can be found. An
which can be heavily tailed. In this model, each node in theexample is the ratio of the numbers of two subgraphs, the
lattice is assigned a degréedrawn from the distribution feedback loop and the feed-forward loGgubgraphs 6 and 7
P(k). k outgoing edges are then randomly connected to otheih Table Il). The ratio of these two subgraphs is 1:3, regard-
nodes according to the connectivity functiéir). This re-  less ofd andF(r). Similarly, the ratio of subgraphs 9, 10, and
sults in a geometric model, with outgoing degree distribution11 is 1:2:1. Table 1ll shows these rati¢stios 1 and 2 for
P(k), and a compact incoming degree distribution. We noteseveral real world networks. The ratios in real-world net-
that several real-world directed networks have compact inworks generally differ significantly from the ratios in isotro-
degree and heavy tailed out-degree, including biologicapic geometric networks.
[32,33 and technological networ$6,57). The above ratios are invariant in the Poissonian geometric
We now derive scaling relations for the number of sub-model, but can change if one considers geometric networks
graphs in geometric networks with a heavy-tailed outgoingwith an arbitrary degree sequence. For example, the feed-
degree sequence: forward loop subgraplisubgraph 7 in Table JIhas a node

n-g, y=s+1.

E. Invariant ratios
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FIG. 4. Three subgraph ratios for different field strengths in an anisotropic geometric model with Gaussian connectivity filinction.
=1, N=2000,R=30, (ky=8. Shown are simulation resulfa—(c) and theoretical curves, obtained from Tabléa)l and Appendix B(b),(c).
Numerical standard errors are smaller than the dot size.

with two outgoing edge$s=2), whereas the feedback loop for the number of appearances of each subgraph as a function
(subgraph 6 in Table Jlhass=1. This would result in an of network size and lattice dimensionality. The scaling is
increased abundance of feed-forward loops for geometrivery different from Erds-Rényi networks for most sub-
networks with heavy-tailed degree sequence. graphs. We find certain ratios of subgraph appearances in
We therefore sought ratios of subgraphs which do notsotropic directed geometric networks, which are “invari-
depend on the degree sequence. These are subgraphs whighs” in the sense that they do not depend on dimension and
have the same subgraph degree sequences. The class of fogfnnectivity function. - _
node directed subgraphs contains several examples of suté- Geometric networks show distinct network mEJgtl_fs. All of
graphs with identical degree sequences. Two examples afge subgraphs scale &5, whereas th_ey scale & in the
shown in Table lli(ratios 3 and % These ratios are invariant co'responding random networks with the same degree se-

with respect to the degree sequence of the network model, Il;eigceé;?]gﬁio;itallgfﬁfﬁLaragsstv‘gz_r\]lgﬁ dnneetftl\\/l\?c::(k;ngt_u 4-
well as to the dimensionalitg and the form ofF(r). 9 '

ied so far, only a subset of these subgraphs are network

_ ) _ _ motifs [15,21,32,33 suggesting that additional constraints
F. Directed anisotropic geometric model or optimization is at play, beyond isotropic geometric con-

In some systems there are preferred directions in whiclstraints.

the probability of a directed connection is larger than in other The network motifs in real-world networks appear to be

directions. To model this, we consideda 1 lattice and in- “extensive variables,” in the sense that their concentration

troduce a bias that favors edges in one direction. In this cas€=G/N does not decrease witN, but scales adN° [33],

a probability of a directed edge to the rightRgy,=pF(r) ~ Whereas their concentration in corresponding randomized

and an edge to the left B;=qF(r), such thap+q=2 (the =~ networks decreases witl. A similar property is found for

sum=2 is chosen to preserve the same mean connechyity the concentration of motifs in geometric networks, which

as for the isotropic modgl The calculation is somewhat SCales ax=G/N~N° and c=G/N~N"9"*<N"* in ran-

more intricate in this case, as the overlap integrals must b@omized networks.
evaluated for different orderings of the noddgpendix B. Table Ill shows that the abundance of feedback loops rela-

The expression for each subgraph is multiplied by a “fieldtive to feed-forward loops in social and World Wide Web
factor,” which depends on the subgraph topology. The result§®tWorks is much less than expected from an isotropic geo-
for three-node directed subgraphs are shown in Table II. metric constraint. Soc_lal _n_etwork_s which represent positive
The scaling is the same as in the isotropic case, except ipEntiments between individuals in a group are known to be
the limit p=0 (or q=0). In the latter limit, no cycles are rich in transitive relationg15,61,63: If X “likes” Y andY
allowed (the network is a directed acyclic grapfhe only likes Z, X tends to also lik&. In these networks, intransitive
closed three-node pattern is the feed-forward lembgraph ~ triplets of nodesX—Y, Y—Z, butX~+2) are known to be
7 in Table ). relatively rare. Feedback loops might be rare because they

The relative abundance of the various subgraphs depen&é’ntain three intransitive triplets and no transitive triplets.
on the “field” 1—p (Table 1)). Subgraphs with mutual edges The feed-forward loop, on the other hand, contains one tran-

(edges in both direction between two nodese biased sitive triplet and no intransitive triplets. This might also ex-
against since mutual edges always contain one edge that go&in the relative rarene$s5,61] of subgraph 10 of Table II,
against the field. The ratios that were invariant in the isotroWhich contain one transitive and two intransitive triplets, as
pic case are no longer independentaindF(r). Several of opposed to two transitive and zero intransitive triplets in the
these ratios are plotted as a function ofdin Fig. 4. Table

Il shows the ratios in real-world networks for the fully bi- >This statement relates to a random ensemble of geometric net-

ased anisotropic geometric network. works which does not preserve the degree sequences of the real
network, only the mean connectivity and clustering coefficigme
IIl. DISCUSSION Poissonian geometric modeln a more stringent random ensemble

which preserves the degree sequences, some of the subgraph ratios
This study presented analytical results for the subgraplhange and depend on different moments of the degree sequences
content of geometric network models. We found scaling rulegSec. Il D[46)).
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more frequent subgraphs 9 and 11. Similar transitivity appear 4’— : : }:F

to characterize the patterns formed by WWW lif&$)]. R 0 y R
In the neuronal network of. elegandeedback loops and

feedback loops with one mutual ed@gibgraphs 6 and 10 in FIG. 5. Overlap are(y)=2R-y shaded in gray. All lattice

Table II)_are much less abundant then expected in isotropiggints within this area can connect to both the origdhand toy.
geometric networkgTable IIl). We analyzed two versions of

the neuronal network—a network which includes all synaptic
connect!ons and a network which includes only “strong”_ (GA):NId:foF(O,y)-F(O,z) -F(y,2)d%d',
connections, where neurons are linked by an edge only if 6 6
they have five or more synapses connecting thaaj. (A1)
Interestingly, when one considers subgraphs with no mu-
tual edgedratios 1, 3, and 4 in Table Il the full neuronal wherely is the d-dimensional overlap integral. In the hard-
network of C. elegandisplays similar subgraph ratios to a cube case it is sufficient to calculate the integral in one di-
highly anisotropic geometric modekith field p<1). Sucha mensionl,. For this connectivity function the axes are sepa-
field may represent a directed flow of information from sen-rable, and the extension t dimension is straightforward
sory neurons, generally located in the head, to motor neuy59,60:
rons. This model cannot, however, explain the abundance of g
mutual edges in the network, which would not appear in lg=11" (A2)
highly biased anisotropic geometric networks.
The subgraph ratios in the neuronal network of stron
connections is not consistent with either isotropic or aniso-

gll reduces to a one-variable integral:

tropic geometric modeléTable IIl). It seems that the motifs Ilzf f F(0,y) - F(0,2) - F(y,2dydz
in this network do not solely stem from geometric constraints - J =
and that additional optimization constraints based on biologi- ® \3 (R
cal functionality are at play5,15,18-21,33,58 Indeed, in = (—) f O(y)dy
transcriptional biological networks, network motifs have 2R/ J g
been experimentally shown to function as pulse generators ® \3 (R
[34,40, asymmetric filterd35], response acceleratof36], = (—) f (2R - |yhdy
and temporal pattern generat¢&y,38,41. 2R/ J g
The present scaling results also apply to the class of ® \3
small-world network modelf4]. These models are obtained = <@> (3R?

by rewiring a limited fraction of the edges in a lattice model.
This leads to a substantial drop in the network diameter but 3 a1
in a small change in the clustering coefficient. = §<k> R, (A3)

The geometric model can be extended in many ways. One
can assign an arbitrary clustering coefficient for each node,
in addition to an arbitrary degree, by specifying both the
number of edgesy;, and a neighborhoo® for each node
[Eqg. (10)]. This can form a more stringent comparison to
networks with broad degree sequences and clustering coeffi-
cient sequencelgt8,49 or community structur¢63—65. In
addition, biases towards mutual edges can be added.

It would be of interest to extend this study to understand
the general relationship between global constraints on a net-
work and its local structurgs,9,66—69.
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APPENDIX A: OVERLAP INTEGRALS FOR THE HARD-

CUBE CONNECTIVITY FUNCTION
FIG. 6. Orientations used in the calculations of the field factor

The intersection integrals reduce to a simple form in thefor the feedback loop in the anisotropic geometric model. Jize
case of the hard-cube connectivity functibp. As an ex- plane is divided into six regions of integration, and the weighting
ample we will consider triangle subgraphs factors are shown above the subgraph diagrams.
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whereO(y) is the overlap area, which includes all positionsremaining nodes are denoted ¥yandz. The formula for the

of z which are in the rang® of both 0 andy (Fig. 5). subgraph occurrences are similar to E2), but here differ-
Extending these results to all directed types of trianglesent integration domains are weighted by different field fac-
(Table 1)) and arbitrary dimension yields tors, depending on the orientation of the three nodes. The
g y-z plane is divided into six regions which correspond to the
(G)= U(i) NRM9-Dd(j)9, (A4) 3! linear ordering of the three subgraph nodes. These regions
29 are generally weighted differently. An example for the feed-

whereo is a symmetry function equal to 1 over the nurnberback loop is shown in Fig. 6. For this subgraph symmetries
7 y y q lead to a simplified expression for the field factar

of permutations of nodes that lead to an isomorphic sub-

graph. EquationA4) contains the scaling of Eq9). The 1
prefactors depend on the symmetry function and on the di- ¢= EPQ(DHJ) =pg. (B1)
mension and decrease with The extension of EqA4) to
larger subgraphs is For n-node subgraphs one should -calculate the
g (n—1)-dimensional integral oven! hypervolumes, corre-
(G)= 0<U_G> NRM9-Dd(j)0 (A5) sponding to all linear ordering of the subgraph nodes. For the
29 case of the four-node subgraphs of the invariant ratios pre-

sented in Figs. &) and 4c), this calculation results in the

whereuvg is the factor stemming from the 1D overlap inte- following theoretical curves:

gral, which depends on the nondirected versioriofThese
factors have been calculated [[59] for subgraphs of up to _ b(p*+q*) + 4a+ c)pq(p® + ) + 6bp?q?

seven nodes. The prefactors for all nondirected four-node b= 0%+ g% + 2bpa D2+ 02 + 2(a+ 20) 022 (B2)
subgraphs are given in Table II. P+a) pap™+a%) + 2 )Pd
wherea=1.1x 1072, b=8.8x 1073, ¢=5.4x 103, and
APPENDIX B: CALCULATION OF FIELD FACTORS _1h(p®+ g +(2e+2f +g-h)pq (B3)

c 2 2
Here we describe the method for calculating the field fac- 2 e(p +a)+(2f+g+hpg
tors for the three-node subgraphs in the 1D anisotropic geavhere e=2.35x 1073, f=1.9x1073, g=3.8x1073, and h

metric model. We fix one node at the origif). The two =1.8x 1073,
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